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IEEE 802.16e Power Save Mode

WiMAX: Worldwide interoperable Microwave Acess standard
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IEEE 802.16e Power Save Mode

Power saving classes
Type I

Best-Effort traffic
Non-Real Time Variable Rate traffic
Successive sleeping window

repeated window is twice the previous one (multiplicative).

Type II
Unsolicited Grant Service traffic
Real Time Variable Rate traffic
Successive sleeping windows

all window have same size

Type III
Multicast connections
Management operations
Only one sleeping window

window size is set to maximum value.
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IEEE 802.16e Power Save Mode

Objective

Questions

Is IEEE 802.16e standard protocol optimal ?

Why MULTIPLICATIVE increase ?

Are random sleep window better ?

Should we start with the lowest window size?

Some of these questions are answered in literature (including our
previous work 1 ) but restricted to only poisson arrival process.

In this work, we try to answer such questions for more general arrival
process.

1S. Alouf and E. Altman and A. P. Azad, Analysis of an M/G/1 queue with repeated
inhomogeneous vacations with application to IEEE 802.16e power saving mechanism,
Proc. of Sigmetrics 2008
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IEEE 802.16e Power Save Mode

Objective

More general modeling which can facilitate analytical study

beyond poisson arrival process
Exponentially distributed off time
Hyper-exponentially distributed off time
General distribution of off time

beyond WiMAX standard sleep duration
General deterministic sleep/vacation duration
Exponentially distributed sleep duration

This model allows us to study the strategy which optimizes the
energy saving and extra delay simultaneously.
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IEEE 802.16e Power Save Mode

Main Contribution

We consider different strategies of power saving, and derive
global optimal behaviour in different scenarios;

We show that when the incoming traffic has a Poisson arrival
process the optimal strategy is the repeated constant policy;

For general traffic, we show that deterministic policies are optimal,
and when the residual off time converges in distribution to some
limit, then the optimal policy converges to a constant;

We propose Suboptimal policies which performs better than
parametric optimal but simpler than Optimal.

Finally, the optimal performance is compared to the performance
of the standards.
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System Model

Off times

TX − τOff time τ arrivals

TX

VX

period B
busy

. . .

t

period Tw

warm-up
period I

idle

Tw

no
arrivals

. . .V2V1

customers

Hyper exponential distributed off times τ with n phases

fτ (t) =

n∑

i=1

qiλi exp(−λi t),
n∑

i=1

qi = 1.

Remark: n = 1 → Exponential distributed off times τ (Poisson Arrival)
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System Model

Optimal Decision Model

Consider a system with repeated vacation. It is needed to take
decision at each vacation instant based on cost

V := ǭE[TX − τ ] + ǫ (ELE[X ] + ESE[TX ]) (1)

TX − τ is the extra delay due to vacation.
ELE[X ] + ESE[TX ] is the energy consumption during vacation.
Weight factor ǫ ∈ [0, 1] balances the priority of system, more energy
conscious or more delay conscious.
X is the number of vacations (random variable).
TX is the X th vacation completion time.

Optimal decision parameters can be obtained by

min
{Bk}k≥1

V (2)

Bk is the distribution of k th vacation. ( minimization over parameters
of the distributions of Bk within a given class of distributions.)
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System Model

Optimal Decision Model

We introduce the following dynamic programming formulation

V ⋆
k = min

bk+1

{E[c(tk , bk+1)] + P(τ > tk + bk+1|τ > tk )V ⋆
k+1

}
(3)

for k ∈ IN, where

c(t , b) := ǭE[(t + b − τ)1{τ ≤ t + b} |τ > t] + ǫ(EL + ESb),

An equivalent total cost problem can be expresses as

V =

∞∑

k=1

{
ǭE[(Tk − τ)1{Tk−1 < τ ≤ Tk}]

+ ǫP(X = k) (ELk + ESE[Tk ])
}

. (4)
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Parametric Optimization

Total Cost

Total cost for hyper exponential Off time τ

V = −ǭE[τ ] +
∞∑

k=0

n∑

i=1

qiT
∗

k (λi) (ǫEL + ηE[Bk+1]) , (5)

whereE[τ ] =
∑n

i=1 qi/λi is the expectation of τ ,
η = ǭ + ǫES,
Tk =

∑k
i=1 Bk ,

T ∗
k (λi) is the Laplace transform of Tk ,

{Bk}k∈IN∗ is the generic random variable denoting k th vacation.
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Parametric Optimization

Parametric Optimization

Identically distributed vacations

Let B be a generic random variable denoting same distribution of all
vacation duration.

V = −ǭE[τ ] + (ǫEL + ηE[B])

n∑

i=1

qi

1 − B∗(λi)
. (6)

Parametric Optimization

Minimize the total cost with some parameter of vacation duration

V ∗ = min
{B}

{
−ǭE[τ ] + (ǫEL + ηE[B])

n∑

i=1

qi

1 − B∗(λi)

}
. (7)
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Parametric Optimization

Vacation Distributions

Strategies

Exponentially distributed vacations; the parameter to optimize is
the mean vacation size b = E[B];

Equally sized vacations (periodic pattern); the parameter to
optimize is the constant vacation b;

General vacations that follow a scaled version of a known
distribution; the parameter to optimize is the scale α;

General discrete vacations; the parameter to optimize is the
distribution p.
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Parametric Optimization

Exponential B, Hyper-Exponential τ

The total cost

Ve(b) = ǫ

(
ES +

EL

b

)E[τ ] + (ǫEL + ηb). (8)

where b = E[B] i.e. mean vacation duration.
Remark: It is valid for any distribution of Off times (B ∼ exp).

Proposition
The cost Ve(b) is a convex function having a minimum at

b⋆
e =

√
ǫELE[τ ]

η
=

√
ǫELE[τ ]

ǭ + ǫES
. (9)

The minimal cost is

Ve(b⋆
e) = ǫ(ESE[τ ] + EL) + 2

√
ǫηELE[τ ] (10)
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Parametric Optimization

Equally Sized B, Hyper-Exponential τ

The total cost

Vc(b) = −ǭE[τ ] + (ǫEL + ηb)
n∑

i=1

qi

1 − exp(−λib)
. (11)

where b denotes the vacation size.

Proposition
When n = 1, the cost Vc(b) is a convex function having a minimum at

b⋆
c = −

1
λ1

(
ζ1 + W−1(−e−ζ1)

)
(12)

with ζ1 :=
λ1ǫEL

η
+ 1,

The minimal cost is

Vc(b⋆
c) = −

1
λ

(
ǭ + ηW−1(−e−ζ1)

)
. (13)

where W (−e−ζ1) denotes the branch of the Lambert W function2
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Parametric Optimization

Quick reference -Lambert function W−1

The Lambert W function, satisfies W (x) exp(W (x)) = x .
As the equation y exp(y) = x has an infinite number of solutions y for
each (non-zero) value of x , the function W (x) has an infinite number of
branches.
W−1(−ex) denotes the branch of the Lambert W function that is
real-valued on the interval [− exp(−1), 0] and always below −1.

x

-2

1

-4

-6

0,5

-8

0-0,5-1

 Lambert Function
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Parametric Optimization

General Vacations

Scaled General Vacations: B = αS.

Vs(α) = −ǭE[τ ] + (ǫEL + ηαE[S])

n∑

i=1

qi

1 − S∗(αλi )
.

The optimization problem can be stated as

min
α

Vs(α), subject to α > 0.

General Discrete Vacations: B =
∑

j pjbj

Vg(ppp) = −ǭE[τ ] +

n∑

i=1

qi

(
ǫEL + η

∑J
j=1 pjaj

)

1 −
∑J

j=1 pj exp(−λiaj)
.

The optimization problem can be stated as

ppp⋆ = arg min
ppp

Vg(ppp), subject to 0 ≤ pj ≤ 1, ∀j and
J∑

j=1

pj = 1. (14)

This optimization problem will be solved numerically.
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Parametric Optimization

Distinct Vacation

Vacations Increasing over Time

When bk = b1f min{k ,l}, and l := log2(bmax/b1)/ log2 f .
Optimal Multiplicative Factor:

Vm(f ) = −ǭE[τ ] +

∞∑

k=0

n∑

i=1

qie
−λi tk

[
ǫEL + ηb1f min{k ,l}

]
(15)

f ⋆ = arg min
f>1

Vm(f ). (16)

Remark: f = 2 ⇒ IEEE 802.16e type I power saving class strategy.

VStd = −ǭE[τ ] +
∞∑

k=0

n∑

i=1

qie
−λi tk

(
ǫEL + ηb12min{k ,l}

)
. (17)
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Dynamic Programming

Dynamic Programming

Recall, one stage cost
c(τ(q), b) = ǭE[(b − τ(q))1{τ(q) ≤ b}] + ǫ(EL + ESb),

DP Equation

V (q) = min
b≥0

{E[c(τ(q), b)] + P(τ(q) > b)V (g(q, b))
}
. (18)

where b denotes vacation duration, q denotes system state, g(q, b)
denote updated state after vacation b.

Starting from V0 = 0, we can use value iteration to compute V (q),

Vk+1(q) = min
b≥0

{E[c(τ(q), b)] + P(τ(q) > b)Vk(g(q, b))
}

. (19)

Then V (q) = limk→∞ Vk (q).
Dynamic programming approach facilitates the study of general
vacation distribution.
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Dynamic Programming

System state

Distribution of residual Off Time τt

P(τt > a) = P(τ > t + a | τ > t)

=

∑n
i=1 qi exp(−λi t) exp(−λia)∑n

j=1 qj exp(−λj t)

=

n∑

i=1

gi(qi , t) exp(−λia) (20)

where

q′
i = gi(qi , t) :=

qi exp(−λi t)∑n
j=1 qj exp(−λj t)

, i = 1, . . . , n. (21)

Remark: Residual time τt is also hyper-exponentially distributed.
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Dynamic Programming

System state

For hyper-exponential Off time

g(q, t) is the n-tuple of function gi(qi , t),

gi(qi , t) =
qi exp(−λi t)∑n
j=1 qj exp(λj t)

Remark: g(q, 0) = q, gi(qi , b1 + b2) = gi

(
gi(qi , b1), b2

)
.

Note that the function g(q, b) updates the state (residual time) after the
vacation b.

Lemma : Convergence of state

Fix q and let I(q) be the smallest j for which qj > 0. The following limit
holds:

lim
m→∞

gm(q, T ) = e(I(q)).
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Dynamic Programming

Exponential Off time

Due to memoryless property residual time τt is independent of t ,
i.e. qqq′ = qqq.

Single Borel action state space (single parameter λ).

Suggests to have equal sized vacations.

Optimal vacation size

V (q) = min
b≥0

{ E[c(τ(q), b)]

1 − P(τ(q) > b)

}
.

This shows that the optimal vacation is equal sized, unique and is
equal to eq. (13).
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Dynamic Programming

Hyper Exponential Off Time

Lemma

(i) For all qqq, V (qqq) ≤ b where b = ǭ + ǫ(1 + supi
1
λi

)(EL + ES).
(ii) Without loss of optimality, one may restrict to policies that take only
actions within [0, b̃] where

b̃ =
b + 1 + 1/(mini λi)

ǭ

b̄ corresponds to unit step cost.
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Dynamic Programming

General Distribution of Off Time

Proposition

(i) There exists an optimal deterministic stationary policy.
(ii) Let V 0 := 0, V k+1 := LV k , where

LV (t) := min
b

{c(t , b) + P(τt > b)V (t + b)}

where c(t , b) is one stage cost. Then V k converges monotonically to
the optimal value V ⋆.
(iii) V ⋆ is the smallest nonnegative solution of V ⋆ = LV ⋆. A stationary
policy that chooses at state t an action that achieves the minimum of
LV ⋆ is optimal.
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Dynamic Programming

General Distribution of Off Time

Proposition

Assume that τt converges in distribution to some limit τ̂ . Define

v(b) :=
ĉ(b)

1 − P(τ̂ > b)
.

Then
(i) limt→∞ V ⋆(t) = minb v(b).
(ii) Assume that there is a unique b that achieves the minimum of v(b)

and denote it by b̂. Then there is some stationary optimal policy b(t)
such that for all t large enough, b(t) equals b̂.
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Suboptimal Policies

Suboptimal policies

One stage policy iteration in the class of i.i.d. exponentially distributed
vacations (Uexp

1 ) ,

V ∗
1 (qqq) = min

b≥0

{
ǭE[(

b − τ(qqq)
)1{τ(qqq) ≤ b}

]

+ǫ(EL + bES) + P
(
τ(qqq) > b

)
V ∗

e (g(qqq, b))
}

(22)

where V ∗
e (g(qqq, b)) is equivalent to V ∗

e (b′), and depends only on the
state g(qqq, b); b′∗ is obtained from (9).

Suboptimal policy strictly does better than parametric and easier
to compute than Optimal.

Similar approach can be used with deterministic vacations.
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Numerical Results

Numerical Results

We analyze the sleep mode of IEEE 802.11e using our proposed
policies.
Performance metrices

V ∗: captures the energy consumed during the sleep duration and
extra delay incurred due to the sleep mode.

b∗: Optimal mean sleep duration.

I (Improvement ratio): It quantifies the performance of the policies
devised in this paper by looking at the relative improvement with
respect to the IEEE 802.16e protocol.

I :=
VStd − VOptimal

VStd
.

The physical parameters are set to the following values: EL = 10, and
ES = 1. The parameters of the Standard are b1 = 2 and l = 10.
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Numerical Results

Exponential Off Time

Impact of λ on optimal and standard policy (IEEE 802.16e protocol).
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Observations
Constant policy is the optimal policy.
Exponential policy is outperformed by standard policy for some λ.

Amar Prakash Azad (INRIA, France) WiMAX Sleep Mode April 22, 2009 28 / 39



Numerical Results

Exponential Off Time

Impact of ǫ on optimal and standard policy.
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Observations
Standard policy is fairly insensitive for ǫ < 0.1 (insensitive to delay ).
Exponential policy outperforms the standard policy for some ǫ.
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Numerical Results

Exponential Off Time

Percentage improvement over standard policy.
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Observations
Constant policy is always the best policy.
Exponential policy yields substantial improvement over a large
range of values of λ and ǫ.
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Numerical Results

Hyper Exponential Off Time

Impact of ǫ on optimal and standard policy for hyper-exponential τ at
λλλ = [0.01, 2, 10], qqq1 = [0.1, 0.3, 0.6], qqq2 = [0.6, 0.3, 0.1].
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Observations

For ǫ < 0.1, all proposed policies outperforms standard policy.
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Numerical Results

Hyper Exponential Off Time
Percentage improvement over
standard policy
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Observations
Constant policy outperforms standard policy for ǫ & 0.4. No policy
is always optimal.
Optimal multiplicative factor approaches to 1+ with Cλ ↑ .
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Numerical Results

Hyper Exponential Off Time
Percentage improvement over
standard policy
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Constant policy outperforms standard policy for ǫ & 0.4. No policy
is always optimal.
Optimal multiplicative factor approaches to 1+ with Cλ ↑ .
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Numerical Results

Suboptimal Policy
Suboptimal policy (U1

Exp) for hyper-exponential τ at initial distribution

qqq = [0.1, 0.3, 0.6], λλλ = [0.2, 3, 10]
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Observations
One stage Suboptimal policy is better than Equal vacation.
At large ǫ system becomes highly delay sensitive, Standard
performs better.
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Numerical Results

Worst Case Performance

when the statistical distribution of the off time is unknown, we optimize
the performance under the worst case choice of the unknown
parameter.

λw := arg max
λ∈[λa,λb]

min
{Bk},k∈IN∗

V

Exponential vacation policy

V ⋆
e (λ) = ǫ

(
ES

λ
+ EL

)
+ 2

√
ǫηEL

λ
.

Ve(b⋆
e) is a monotonic function decreasing with λ.

λw ,e = arg maxλ∈[λa,λb] V ⋆
e (λ) = λa.

Observe that limλ→+∞ V ⋆
e (λ) = ǫEL and limλ→0 V ⋆

e (λ) = +∞.
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Numerical Results

Worst Case Performance

Constant vacation policy

V ⋆
c (λ) =

−ǭ − ηW−1

(
− exp

(
−1 − λǫEL

η

))

λ
.

V ⋆
c (λ) is a monotonic function decreasing with λ.

limλ→+∞ V ⋆
c (λ) = ǫEL and limλ→0 V ⋆

c (λ) = +∞.
Evidently, λw ,c = arg maxλ∈[λa,λb] V ⋆

c (λ) = λa = λw ,e.

We have studied the function using the mathematics software tool, Maple3 11.

3Maple is a copyright of Maplesoft, a division of Waterloo Maple Inc.
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Conclusion

Concluding Remarks

Introduced a model for control of vacation taking into account the
trade off between energy consumption and delays.

Constant vacation policy is optimal for poisson arrival process.

Standard protocol is not always optimal even for
Hyper-Exponential off time.

Optimal multiplicative factor asymptotically approaches to 1+ with
increasing arrival rate instead of 2 as proposed by standard
protocol.

No proposed (including standard) policy is always optimal for
hyper-exponential. Any adaptive algorithm which can have optimal
performance ?

Amar Prakash Azad (INRIA, France) WiMAX Sleep Mode April 22, 2009 37 / 39



Conclusion

Thanks !!!
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Conclusion
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Conclusion

Welcome to Quanyan!!!!!!
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